Use of Infrared Camera Video Footage from a Wildlife Protection System to Assess Collision-Risk Behaviour by Deer in Kootenay National Park, British Columbia

We used video footage from infrared and conventional video cameras within a Wildlife Protection System (WPS) installed along a flat, 2 km stretch of Highway 93 in Kootenay National Park, British Columbia. Canada to assess collision-risk behaviors by deer. The study was conducted on 16 days from 29 August to 7 October, 2002. We recorded 1131 deer-minutes of behavior (number of deer multiplied by the time they were present during the sampling period). Based on marked breaks in hourly totals of deer-minutes, we stratified the 24-hour period into:

- night (midnight to 7 AM),
- midday (7 AM to 7 PM),
- evening (7 PM to midnight).

Both the number of deer and the duration of their stay in the highway right-of-way were greatest during the night, intermediate during the evening, and lowest during midday, so the number of deer-minutes per hour was 2x higher at night than evening, and over 15x higher at night than midday. Similarly, the peak in hourly rates of most collision-risk behaviors occurred during the night. However, all of the risk behaviors measured showed higher per-deer rates during midday than during the evening or at night, including:

- presence of roadside,
- approaches to highway,
- running approaches to highway,
- presence on the highway surface,
- attempted highway crossings,
- running highway crossings,
- crossing in front of oncoming cars,
- aborted highway crossings.

The hazard presented by higher per-deer rates of risk behaviors during midday was compounded by greater traffic volumes during midday than evening or night. Driving in daylight increases deer visibility, but being within the line-of-sights of cars more typical of midday presumably decreases the driver’s field of view and may increase the collision hazard associated with a driver swerving or making a sudden stop. Thus, the net risk of wildlife-related accidents during midday may be much higher than raw animal numbers would suggest. No reliable data are available for the test section indicating timing of wildlife-related accidents. In fact, “swept-to-miss” types of accidents are not recorded as wildlife-related unless an actual animal collision occurs, making any available data potentially suspect. System such as the WPS, which are designed to work at all times of the day and are triggered by animal presence, offers the greatest ability to prevent wildlife-related accidents in situations similar to those we studied.

Measure	**Night**	**Midday**	**Evening**
Mean number of deer in ROW per 5-minute sample | 1.08 | 0.25 | 0.60
Mean duration of stay (min) per deer in ROW per 5-minute sample | 3.92 | 1.40 | 2.81
Mean deer-minutes in ROW extrapolated to hourly rates | 51.3 | 3.5 | 20.7

Measure	**Night**	**Midday**	**Evening**
Present in ditch (total) | 0.60 | 0.14 | 0.83
Present at roadside (total) | 0.61 | 0.16 | 0.36
Approaches to Highway (run/walk) | 0.07 | 0.18 | 0.29
Running approaches to highway | 0.04 | 0.11 | 0.06
Present on highway (total) | 0.11 | 0.04 | 0.07
Attempted highway crossing | 0.09 | 0.03 | 0.05
Highway crossing running | 0.02 | 0.01 | 0.00
Highway crossing aborted | 0.03 | 0.01 | 0.02
Highway crossing in front of vehicle | 0.02 | 0.01 | 0.00
Wildlife-vehicle collision | 0.00 | 0.00 | 0.00

Measures of Deer Behavior Over 1 km During Study

- Mean Occurrence per 5-Minute Sample Period
- Mean Occurrence per Deer Observed

Measure	**Night**	**Midday**	**Evening**
Mean Occurrence per 5-Minute Sample Period | 0.00 | 0.25 | 0.61
Mean Occurrence per Deer Observed | 0.83 | 0.66 | 0.94

Data Stratification Periods

- **Evening (19:00 - 23:59)**
- **Midday (7:00 - 18:59)**
- **Night (0:00 - 6:59)**

Vehicle Numbers (v/hour) per 5-Minute Sample Period

- **Night:** 20.7 vehicles per hour
- **Midday:** 1.1 vehicles per hour
- **Evening:** 0.6 vehicles per hour

Funding for this Project was provided by:

- The Insurance Corporation of British Columbia
- IntransTech
- Parks Canada
- The Columbia Basin Fish and Wildlife Compensation Program

Syvan Consulting Ltd

RR5, 3519 Toby Creek Road Invermere, British Columbia Canada V0A 1K5

Email: sylvan@rockies.net Fax: (250) 342-0532 Ph: (250) 324-3205

References

- Trevor Kinley
- Nancy Newhouse
- Hillary Page

Use of Infrared Camera Video Footage from a Wildlife Protection System to Assess Collision-Risk Behaviour by Deer in Kootenay National Park, British Columbia

- Night (midnight to 7 AM),
- Midday (7 AM to 7 PM),
- Evening (7 PM to midnight).

- Both the number of deer and the duration of their stay in the highway right-of-way were greatest during the night, intermediate during the evening, and lowest during midday, so the number of deer-minutes per hour was 2x higher at night than evening, and over 15x higher at night than midday. Similarly, the peak in hourly rates of most collision-risk behaviors occurred during the night. However, all of the risk behaviors measured showed higher per-deer rates during midday than during the evening or at night, including:

- presence of roadside,
- approaches to highway,
- running approaches to highway,
- presence on the highway surface,
- attempted highway crossings,
- running highway crossings,
- crossing in front of oncoming cars,
- aborted highway crossings.

- The hazard presented by higher per-deer rates of risk behaviors during midday was compounded by greater traffic volumes during midday than evening or night. Driving in daylight increases deer visibility, but being within the line-of-sights of cars more typical of midday presumably decreases the driver’s field of view and may increase the collision hazard associated with a driver swerving or making a sudden stop. Thus, the net risk of wildlife-related accidents during midday may be much higher than raw animal numbers would suggest. No reliable data are available for the test section indicating timing of wildlife-related accidents. In fact, “swept-to-miss” types of accidents are not recorded as wildlife-related unless an actual animal collision occurs, making any available data potentially suspect. System such as the WPS, which are designed to work at all times of the day and are triggered by animal presence, offers the greatest ability to prevent wildlife-related accidents in situations similar to those we studied.